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SUMMARY 

The problem of vertical motion of a sphere across an oscillating free surface is analysed by assuming the fluid 
to be inviscid and the free surface to be an equipotential surface. New analytical solutions for the added-mass 
coefficients of a double spherical bowl are derived. These are used in the derivation of the drag coefficient of 
a sphere during vertical entry and of the slamming coefficient of a fixed sphere which is exposed to wave ac- 
tion. An additional important parameter in hydroballistics is the wetting factor of a sphere penetrating a free 
surface for which a new analytic solution is also derived in this paper. A comparison between some experi- 
mental data and the analytic expressions for the slamming coefficient and the wetting factor, shows good agree- 
ment between theory and measurements. 

1. Introduction 

The problem of  water impact and water entry o f  bluff  bodies striking a free-surface is a classical 

problem in naval hydrodynamics.  The first analytical studies of  this problem were preformed 

during the early thirties and were stimulated by an interest in the landing characteristics of  sea- 

planes that  were first designed at that  time. Hence the classical works o f  yon K~rm~n [27], 

who approximated the shape o f  the striking body by a growing flat plate, that  o f  Wagner [28], 

who went a step beyond K~rm~n's analysis by considering also the water splash, and the work 

of  Sedov [18], who introduced the powerful method o f  conformal transformations, are all con- 

sidered as land-marks in the study of  hydrodynamic impact and water entry. The second world 

war again served as an impetus for conducting further research in this field, primarily because 

of  the interest in water entry and water exit of  projectiles. In this category we make reference 

to the important  contributions of  Schiffman and Spencer [19, 20] who studied the case of  a 

vertical entry of  spheres and cones by using an approximate model  which considers the flow 

about an expanding lens with its reflection in the original undisturbed surface. The work of  

Trilling [26] that followed Schiffman and Spencer's analysis seemed to have the greatest poten- 

tial for practical application for arbitrary shaped bodies. Trilling's work may be also considered 

as a three-dimensional extension o f  Sedov's work in the sense that the immersed port ion of  the 

body is approximated by an equivalent prolate spheroid. 
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About the same time the connection between ship slamming and hydroballistics was first in- 

vestigated (Szebehely [22]) and numerous papers, applying analytical tools developed for hydro- 

dynamic impact to the study of ship slamming, were published thereafter. Extensive general re- 

views on hydrodynamic impact and ship slamming are also available, and in particular we make 
reference to Szebehely [23], Chu and Abrahamson [3], Burt [2], Thigpen [25] and May [11]. 

In recent years a new application of the theory of hydrodynamical impact and water entry 

and exit was found in the field of ocean engineering and, in particular, in offshore technology. 

In designing offshore platforms in the open sea it is of primary importance to compute the wave- 

impact forces acting on the structure members. Here, in contrast with the water entry problem, 

the structure is fixed and the free surface is oscillating about the body such that the immersed 

portion of the body changes with time. The studies conducted so far in this problem dealt with 

the wave-slam on horizontal members of cylindrical cross-sections. (Kaplan and Silbert [9], Dal- 

ton and Nash [5], Faltinsen et al. [6], and Sarpkaya [17]). The analysis presented in these papers 

employs the added-mass concept of the wetted portion of the body together with its image within 

the free surface, and is based on the well-known solution for the added mass of a segment of  a 
circle (Taylor [24]). 

The motivation for the present study was an immediate interest of the offshore industries in 

estimating the slam forces acting on fixed spherical buoys that are exposed to severe wave action 
in the open sea. The analysis thus developed assumes the fluid to be inviscid and the free surface to 

be an equipotential surface, as discussed in the next section. 
Since, to the best of the author's knowledge, an equivalent to Taylor's exact solution for the 

added mass of a segment of a cylinder is not available for a sphere, one of the important results 

of the present study is an analytical solution for the added-mass coefficient of a double spherical 
bowl. It is also verified that in the limit of  maximum submergence the solution obtained for a 
double spherical bowl reduces to the one available for two touching spheres (Bentwich and Miloh 

[1]). The analysis also provides rather simple algebraic expressions for the wetting coefficient 
and for the splash contour caused by the vertical impact of  the sphere, expressions that agree 

with available experimental measurements. Finally, the vertical slam force acting on the sphere 

is calculated for the general case in which both the free surface and the sphere are moving. The 

slamming coefficient and its variation with the submergence depth are also computed, demon- 

strating a major difference between the impact force acting on a sphere and on a cylinder. In 

spite of the close resemblance in the variation of the added-mass coefficients with submergence 

depth for a cylinder and for a sphere, it is found that the impact of a cylinder is of  an impulsive 

nature whereas the slamming coefficient for a sphere is continuous, starting from zero at the in- 

stant of  impact and attaining a maximum value immediately thereafter. 

2. Statement of the problem 

Consider the motion of a rigid sphere of radius R penetrating vertically a free surface with a time- 
dependent velocity U(t). At the instant of  contact between the sphere and the free surface we 

set t = 0 and the elevation of the undisturbed free surface (by the sphere) at this instant is de- 
noted by z = ~" (x, y ,  t = 0) = ~'o (x, y). Here (x, y ,  z) denotes an inertial cartesian coordinate 
system with an origin at the mean free surface level, such that z is directed downward from the 
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free surface in the direction of the gravitational acceleration g. If the characteristic wave length 

of the free surface disturbance is large compared with both the wave amplitude and the sphere 
radius R it is permissible to assume that in the immediate neighbourhood of the sphere, the 
free surface is horizontal and moves vertically with a time-dependent velocity o s (t)and that ~" = 
~'(r, t). For Stokes waves, for example, both the free surface velocity and elevation are harmonic 
in time t. Under the assumption of large wave-length the problem is symmetric about the z axis 
and thus can be formulated using a cylindrical coordinate system (z, r). 

The problem of a free surface that is being struck by a solid body is generally characterized 
by small time scales and relatively large velocities which enable us to neglect viscous-drag forces 
and surface-tension forces in comparison with inertial hydrodynamic forces. Since the fluid is con- 
sidered inviscid and the disturbance motion due to the penetrating sphere has started from rest, 
the flow is irrotational and may be derived from a velocity potential ~. The totalvelocity poten- 

tial ~(z, r, t) is the sum of the undisturbed wave potential ~s(r, t) and the disturbance potential 
¢(r, t) caused by the motion of the sphere through the free surface. Clearly, ~s(z, r, t) is only. 
locally axisymmetric and within linearized theory 

O~ (0, t )= O~bs vs(t ) = ~ -  ~ (z,O,t) onz =~'(0, t ) -  (1) 

The free surface boundary condition satisfied by both ~b s and ¢ is 

0--~- + i (Vq)" Vq~) + p/p = F(t) on z = ~'(r, t) + ~'*(r, t) (2) 

where p is the pressure, p the fluid density, ~'*(r, t) is the free surface disturbance induced by 
the moving surface, and F(t) is an arbitrary function of time. At large distances from the origin 
(r -+ ~o), both V¢ and ac~/Ot vanish and the requirement that the pressure be zero on the free sur- 
face yields 

O0 i 
0 t  + i (VO" VO) = 0 on z = ~'(r, t) + ~*(r, t). (3) 

The undisturbed wave potential ~b s satisfies the free surface boundary condition and is considered 
to be given. For the disturbance potential ~b one may argue that the impact occurs during a very 
short time interval and that equation (3) may be linearized to give 

~b(~" + ~*, r, t) = O. (4) 

This free surface condition was first employed by Sedov [18] in his studies regarding the impact 
of two-dimensional solid bodies with a free surface. It is also known (Lamb, [10]) that during 
impact the dynamic pressure is proportional to the velocity potential which again verifies the 
linearized free surface condition (4). Equation (4) is also the large-frequency limit of the free 
surface boundary condition which governs the forced oscillation of a floating body on a free 
surface. Clearly, equation (4) does not imply the presence of any surface disturbance induced 
by the motion of the sphere. This may be physically justified for a small time interval (small 
penetration) after impact when gravitational forces may be neglected with respect to inertia 
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forces. Equation (4), under the assumption of small free surface disturbance due to the free waves 
and the splash, may be applied on the horizontal interface, 

~b[~'(0, t) r, t] = O. (5) 

When the fluid medium filled by the lower half-space z > 0 is quiescent before the sphere impact, 

the undisturbed free surface is stationary at z = 0 and hence, (5) reduces to 

~(0, r, t) = O. (6) 

Most previous studies on the impact of  bodies on a free surface have ignored the free surface 

motion or the splash effect and used (6) as the corresponding free surface boundary condition, 

following the classical contributions ofvon K~rm~in [27], Sedov [18] and Trilling [26]. The first 

to consider the free surface disturbance caused by a body striking vertically on otherwise undis- 
turbed free surface was Wagner [28], followed by the notable work of Schiffman and Spencer 

[20] on a cone in vertical impact. Schiffman and Spencer's theory takes into consideration the 

effect of  piled-up water on the body so as to increase its wetted portion by assuming the free 

surface to be still a zero-potential surface moving with a finite vertical velocity. The so called 

splash effect is depicted schematically in Fig. 1. At the instant when the lowest point on the 
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Figure 1. Variation of the added-mass coefficient of reflected cylindrical and spherical segments with the 
penetration depth (eqs. (38) and (42)). 
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body is at a depth ho below the original flat surface, the actual free surface contour is denoted 

by ~'(r, t) where, according to linear theory 

a~-(r, t) a4~(r, t) 

Ot Oz 
(7) 

which is to be applied on the original flat surface together with (6). The deformed free surface 

intersects the sphere at r = c at which point the free surface attains its maximum value ~'(c, t). 
An important parameter in the determination of the hydrodynamical reactions acting on a solid 

body striking a free surface is the so-called wetting factor defined by 

~'(c, t) 
C w : 1 + - - ,  (8) 

ho 

and represents the ratio between the elevations of the actual and the undisturbed free surface 

above the lowest point of the body. 

The problem that we wish to solve is that of a sphere striking vertically an oscillating planar 

free surface with velocity U(t) such that the instantaneous elevation of the free surface above 

the mean sea level is given by 

~(t) = A sin (2T t - -  +~Os) (9) 

where A and T represent the amplitude and period of the free surface oscillation and ~0 s is a 
phase shift defined by 

~Ps = sin-I (~o/A) (10) 

where ~'0 is the elevation of the free surface above the mean-sea-level at the instant of contact 

t = 0 .  
The undisturbed oscillating free surface is taken to be an equipotential plane on which (5) 

holds and the splash disturbance due to the penetration of the sphere is given by (7) applied on 
the undisturbed free surface z = ~'(t). These two boundary conditions, which must hold on the 

free surface are supplemented by the requirement that the sphere be an impermeable surface 
and that the disturbance velocity potential decays to zero at large distances from the sphere. 

3. The Stokes stream function for the flow about a spherical bowl 

The fact that the velocity potential vanishes on the planar free surface implies that the axisym- 

metric potential flow about the submerged portion of the sphere may be determined by consid- 
ering the flow about the double-model which consists of the original submerged sphere portion 

and its mirror image in the planar free surface. Hence, the present study involves the solution 
for the axisymmetric potential flow of a double-spherical bowl moving with a time dependent 
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Figure 2. Definition sketch for toroidal coordinates. 

velocity along its axis in an infinite expanse of  fluid. The double-spherical bowl has two char- 

acteristic lengths, namely the sphere radius R and the instantaneous location of  the sphere origin 

below the free surface Zo as depicted in Fig. 1. 

A convenient triply-orthogonal coordinate system suitable for the present geometry is the 
toroidal coordinate system (:7, 0, ~0), where, following Moon and Spencer [14], 7/= const (0 ~< r/ 

< ~o) are toroidal surfaces, 0 = const (-rr ~< 0 < n) are spherical bowls, and ~0 = const (0 ~<~ < 27r) 

are half-planes (Fig. 2). The orthogonal transformation between the cylindrical coordinate sys- 
tem (z', r '),  with an origin on the instantaneous actual free surface, and the toroidal system is 

, a sin 0 r '  - a sinh 
z = ; (11) 

cosh ~ - cos0 cosh r / -  cos0 

where a is a characteristic parameter which is equal to the radius o f  the contour of  intersection 

o f  the sphere and the free surface. The metric coefficients of  the above transformation are 

a a sinh ,7 

hn =h° = c o s h r / - c o s 0  ; h ~ -  c o s h r / - c o s 0 "  (12) 

The equation of  the double-spherical bowl 0 = 0o = const is 

r 2 + (z - a cot 0o) 2 = (a/sin 0o) 2 (13) 
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which implies that the sphere radius R and the location of the sphere center below the free sur- 

face Zo, are given by 

R =a/sinOo ; Zo=acotOo =R cosOo. (14) 

Since the family r/= constant represents toroidal surfaces, it seems that the same toroidal (or 

ring) harmonics which have been used by Sternberg and Sadowsky [21] and by Miloh et al. [13] 
in analysing the three-dimensional motion of a finite torus, would be also appropriate for the 
present case. The only difference is that instead of applying the boundary conditions of no flow 
across the 7 = constant surface, one should apply them on the surface 0 = constant, representing a 

spherical bowl. However, this procedure turned out to be inappropriate for the present case for 

the reasons explained below. 

A typical exterior harmonic which is a normal separable solution of the Laplace equation in 

toroidal coordinates which vanishes at infinity (7 = 0) is 

, ,  4  n.0 t si"m  t 4)e(7,0,~0)=(cosh 7 --cosO)~/2Pn_½ ( c o s h 7 ) [ c o s n 0  tcosm~0 " (15) 

Similarly, a typical interior harmonic which is regular at the origin (7 -+ oo) is 

)~sinnO t ~sinm~° } 
~i(7,0,~0) = (cosh • cosO)Y2 Qm_½ (cosh7 [cosnO [ c o s  m~0 (16) 

where n and m are integers and Pn -- ½ and Qn - ½ denote the Legendre functions of  first and second 
kind, respectively. 

These interior and exterior harmonics, while being applicable for flow-field description in 

the interior and exterior of a toroidal surface, are inappropriate for the corresponding flow de- 

scription about a spherical bowl. The reason is that both in the interior and in the exterior of 

the spherical bowl 7 varies continuously from 0 to 0% implying that on the bowl surface 0 = 0 o 

both the interior and the exterior harmonics are unbounded and can not be used as such for the 
present geometry. 

This difficulty may be overcome by using the conal functions (Kegelfunktionen) first intro- 

duced by Mehler (1868), instead of the toroidal functions. The conal functions, which are basi- 

cally Legendre functions of complex order, are discussed in Hobson [8] and were employed by 

Miloh [12] in analysing the blockage problem of a central body in a conical duct. 

In the present formulation, it was found advantageous to employ the Stokes stream function 
instead of the velocity potential because of the axial symmetry of the flow, as demonstrated by 

Bentwich and Miloh [1] in the case of axisymmetrical flow about contiguous two-spheres. The 

Stokes stream function ff is related to the velocity components in tile (7, 0) directions by 

= - -  ; u n = (17) 
u° hnr 37 hor 30 

Equation (17) implies that continuity is satisfied and the additional requirement of irrotation- 
ality yields 
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( a  1 D ~ 1 a )  
+ - -  - - -  ~(r/, 0) = 0. (18) 

0~? r Or/ 00 r 00 

To solve equation (18) for the stream function, we postulate a solution for ~O in the following 
form: 

¢(r/ ,  o )  = a 2 ( c o s h  r/ - cos  O) - ~ / / ( 7 7 )  0 ( 0 )  (19) 

which, when substituted into (18), yields 

Is d 1 d + (p2 + ¼~ H(r/) = O 
inh r/ dr/ sinhr/ dr/ 

and 

(20) 

6 2 

(d-~ - p2) ®(0) = 0 (21) 

where p is an arbitrary real number, not necessarily an integer. 
A particular solution of (20) is 

d d 
H(r/) = sinh r~ ~ P 1 A + ip (cosh r/) = sirth r/ SS__ Kp (COsh ~) u'q uTI (22) 

where Kp (cosh r/) denotes the conal function defined in (22) in terms of the Legendre function 
of the first kind of complex order. A general solution for the Stokes stream function is thus 
given by 

d 
~O(r/, 0) = a 2 (cosh 7/ - cos 0) -  1/2 sinh r~ ao(-°OA(P) 7-- Kp (cosh 77) coshp0dp 

ar/ 
(23)  

where A(p) is an arbitrary function of p to be determined. It should be noted that the expres- 
sion on the right-hand side of (23) is bounded for 0 ~< r /<  ~ and hence may be used to describe 
the flow field exterior to the spherical bowl. The fact that the expression for the stream function 
is bounded for r/-+ ~ has been demonstrated by Hobson [8] and Robin [16] and may be shown 
by considering the asymptotic expansion ofKp (cosh r/) for large r/reproduced in Appendix B. 

The unknown function A(p) is found by employing the boundary condition that 

f(r~, + 0o)  = i 2 - 7 r  ( 2 4 )  

which implies that the double spherical bowl is a stream surface when moving with a unit veloc- 
ity in the z direction. Substituting (11) and (23) in (24) yields the following integral equation 
for A (p) 

d 
d--~ f L~A(p) Kp(c°sh r/)cosh(PO o)dp + (cosh r/-cOSOo) - y2 t = 0 .  (25)  
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To solve (25) for A(p) ,  it is necessary to obtain an integral representation in terms of the 
conal function of the non-integral part of (25). Such an expression is derived in Appendix A 
and here we reproduce only the final result: 

(cosh r / -  cos 0) -V2 = x/~ fo = sech (pro cosh [p(rr - O)]Kp(COsh 77)dp • (26) 

The fact that (25) is valid for any r7 implies, when using (26), that 

A ( p )  = - X/~ cosh [p(Tr-0o)] (27) 
cosh(pTr) cosh(p0 o) 

or, after substitution in (23), 

d 
~(r/, 0) = - x/~a 2 (cosh 77 - cos 0)-V2sinh 7/fo ~ ~ Kp(cosh 7/) (28) 

cosh [p(Tr - 0o)] cosh(p0) 
x dp. 

cosh (pTr) cosh (P0o) 

This disturbance stream function, which satisfies (24), vanishes at large distances from the 
sphere (7? -+ 0). Since ff is an even function of 0 its normal derivative vanishes on the undis- 
turbed free surface 0 = 0 and hence the velocity potential is zero on this surface. 

4. The added-mass of a spherical bowl 

We consider the kinetic energy of the infinite expanse of  fluid exterior to the double spherical 
bowl given by 

T(0o)= 30 h-~-~r Or/] 
(29) 

This can be reduced, following Bentwich and Miloh [1], to a simpler form: 

fo T(O o) = t (r dr? 17rp (30) 

which is to be evaluated at 0 = 0o. 
Substitution of  (11) and (28) into (30) yields, 

,,/5 7"(00) 
_ r L ~ PXI(P, O) lrpa 3 

cosh [p(rr - 0o)] sinh(pO) 

cosh (pTr) cosh(p0o) 
dp 

0 = 0 o  
(31) 

f f f  cosh [p(rr - 0o)] sinh(p0) I + ×2(p,O) dp 
cosh(prr) cosh(p0o) 0 = 0o 
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where 

and 

XI(P, 0) = - fo** sinh27?(cosh r / -  cos 0)- 3/2 d Kp (cosh r/)dr/ 

d 
X2(P, O) = ½ fo sinh2r/(c°sh ~7 - cos 0)-% sin 0 ~ Kp(cosh r/)dr~ 

i aXl(p, 0) 
- - 3  a0 

(32) 

(33) 

By employing the Fourier-Mehler integral transform it is possible to obtain an analytic ex- 
pression for both Xl (P, 0) and X2 (P, 0). The derivation is given in Appendix B and here again 
we give only the final results: 

×2 (P, 0) = V ~  (2/p) (p2 + 1/4) cosech(pn)cosh [p(n - 0)], (34) 

X2 (P, 0) = - X/~(2/3)(p 2 + 1/4) cosech(pn)sinh[p(n - 0)]. (35) 

Finally, substituting (34) and (35) into (31) and evaluating the resulting expression at 0 = 0o, 
we obtain the following expression for the kinetic energy: 

Fcosh2 [p(n_- 0o) ] sinh(P0o) sinh [2p(n-  0o)] ~ d 
T(0°) : rrPa3 fo (4p2 + 1) [_ sinh(2pr 0 cosh(p0o) - 6-~-nh(--~p~i -J p" 

(36) 

It is clear that (36) converges for 0 ~< 0o < 7r and that T(n) = 0. It is more convenient for nume- 
rical evaluation purposes to express (36) in a slightly different manner: 

T(0°) = rrPRa \/SinooO° ]i a fo= (472 +02o) t sinhC°Sh2(276) cosh [7(8 - 1)] sinh 7 7  - 6 s-Tnh (-~78)sinh [27(6 -1 ) ]  / d7 

(37) 
where 8 = n/0o and 3' = pOo. 

To find the added-mass coefficient of the double-spherical bowl 0 = 0o we divide the kinetic 
energy by the displaced mass of the fluid pV(0o) which renders for 7r > 0o > 0 

. 2T(0o) 6T(0o) 
X(0o) = ~ - 1foR3( 2 + 3 cos 0 o - cosa0o) (38) 

Three limiting cases of (38), for which an exact solution is available, will next be discussed. 
The first case is 0o = rr/2 which corresponds to a sphere which is exactly half submerged, and 
hence the double body is a complete sphere. Substituting 6 = 2 in (37) and (38) and recalling 
that (Gradshteyn and Ryzhik, [7], p. 344) 

cosh(27) d7 = (39) 
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yields X(zr/2) = 1/2, a well known result for the added-mass coefficient of  a complete sphere. 

The second limiting case to be examined is that of  a uniform axisymmetric flow past two 

spheres in contact, which, in the present coordinate system, corresponds to 00 = 0. Taking the 

limit of  (37) as 0o ~ 0 and 5 -+ oo we get for the kinetic energy 

f o  ,~2 _ _ -  e - 2  d7 T(O) = 2rrpR a cosh 7 3 
(40) 

which, following Gradshteyn and Ryzhik, [7], p. 361, may be evaluated as 

2 3 [9 ~'(3) 1], (41) 7(0)  = 5 7rpR 

where ~'(3) denotes the Riemann Zeta function. Since V(0) = (4/3)1rR 3 the term in the paren- 

thesis o f  (41) is in fact the added-mass coefficient o f  a flow past adjacent two spheres, which 
was also previously obtained by Bentwich and Miloh [1]. The same coefficient also represents 

the added-mass coefficient in a pure oscillatory heave mot ion below a free surface in the limit 

o f  infinitely large frequency and at the instant o f  contact with the free surface. The numerical 

value of this coefficient is ?~(0) = 0.3552314... 
The third limiting case of  interest is just prior to contact with the free surface which corres- 

ponds to 0 o = 7r. Clearly, for this case both the kinetic energy and the submerged volume of the 

sphere vanish. However, closer scrutiny of  the ratio between the two reveals that k(Tr) ~ ~.  This 

result should be also compared against the classical solution of  Taylor [24] for the added-mass 

coefficient o f  a double cylindrical segment which also yields infinitely large added-mass coeffi- 

cient for the cylinder at the instant of  contact. Taylor 's solution for the added-mass coefficient 

o f  a segment of  a circle of  radius r and submergence z is 

[- 27r3(1 - cos ¢) 7r(1 -- cos tp) 1 
X(~p) = [3(2~  --- ~0-) ~- i ~ - -  si--n ~o) + 3(~0 - sin ~p) - 1 (42) 

where ¢ is the angular opening of  the segment given by 

tp = 2 c o s - l ( 1  - z/r). (43) 

This yields 

7r 2 
X(Tr) = 1 and X(27r)=--~ -- 1 (44) 

The added-mass coefficients for both  a sphere and a cylinder as a function of  the submerg- 
ence are plotted in Fig. I .  Noteworthy is the close resemblance between the two. 

5. Determination of the splash contour 

The linearized solution for the actual free surface prof'de due to the penetration of  the sphere is 
given by (7) and is expressed here in terms of  the Stokes stream function using toroidal coordi- 

nates: 

Journal of Engineering Math., Vol. 15 (1981) 221-240 



232 T. Miloh 

3~'(r/,t) _ _ 1 3_~_~ O_pr/ 1 Off 00 [ (45) 
0t r 00 0z r 0rl 3z [ 0 = 0  

where 0 = 0 represents the undisturbed free surface (z = 0). Since the transformation (z, r) 

(r/, 0) is orthogonal, we obtain from (11) and (12) 

00 1 0 z  1 

Oz h~ 30 a 
(cash r/cos 0 - 1), (46) 

0rl 1 3z 1 
. . . . .  sinh 77 sin 0 

3z h~ 3r/ a 

which, when evaluated on the undisturbed free surface, yields 

00 1 (coshr/ 1), Or/ 
3z - a ~-z = O. (47) 

Hence, (45) reduces for 0 = 0 to 

o r  

O~(r/, t) 1 00 Off 1 (cash r/-- 1) 2 0 ~  

0t r 0z 3r/ a 2 sinh r/ 0r/ 0 = 0 '  
(48) 

~'(r/,t) (cosh~_-_l)2 t 1 0 
- - sinh r~ fo a -2 3--~ ~(r/' t)dt.  (49) 

Denoting the instantaneous location of  the sphere center below the undisturbed free surface by 

Zo(t) ,  we have from (13) 

dZo(t)  = Vr(t)dt = - R sin Oo (t)dOo (50) 

where Vr(t) denotes the relative velocity between the moving sphere and the oscillating free sur- 
face. Substitution of  (28) and (50) in (49) gives 

__a fO sin0osinh  fo d 
sinh 77 0rl o (t) (cash r / -  1) V2 ~ Kp(cosh r/) (5 1) 

cash [pOt - 0o)]  
x dpd 0 o 

cosh(pn) cosh(p0o) 

since the stream function was originally defined for a unit axial velocity. 
Since r/-+ oo at the intersection of  the sphere with the undisturbed free surface, the splash 

contour in the neighbourhood of  the sphere may be determined by examining the asymptotic 
behaviour of  (51) for large values of  r/. The corresponding asymptotic expansion of  the canal 
function Kp(cosh 7/) is, following Robin ([16], Vol. 3, p. 153), 
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cot pTr / 1/~ 
(52) 

where ~ is some phase angle. 

For large values of r / the  argument of the trigonometric function implies that most of  the 
contribution to the integral in (51) is from small values o fp .  This is also evident when the Kel- 

vin's method of  stationary phase is used, and hence equation (51) is approximated by 

f ( r h t ) = x / ~ R ( c o s h r / - 1 ) 2  0 for s in0os inhr /  fo ,~ d 
sinh 77 a-~ o (cosh r / -  i) 1/2 ~ Kp(cosh 7/) (53) 

cosh [p(Tr- 0o) ] 
x dpdO o 

cosh(pzr) 

which may be also considered as an upper bound for the actual splash contour. Substitution of  

(26) in (53) yields 

~(n ,  t )  = 
R(cosh r / -  1) 2 

sinh r~ 

. 

0~7 cosh 7? - 1) 1/2 (cosh 77 - cos 0o) 0o 

_ _ _ R (cosh r/ - 1) y2 fo r sin 0o(cosh ~ - cos 0o) -5/2 [(1 + cos 0o) 
2 o 

3 x (2 cosh r / -  ~ cosh2r~ - 1A) + sinh2 r/]d0o 

(54) 

which in the neighbourhood of the sphere were cosh ~ > >  cos 0o, gives 

~'(r/, t) - 
R (cosh r/ 1) V~ - -  1 3 

2 (cosh 77 -- cos 00)s/~ (1 + cos 0o) [(2 cosh 77 - ~ cosh2~/-  ~ ) -  

3 1 ~1 (1 - cos 00)(2 cosh r / -  ~ cosh 2r/ - ~ )] . (55) 

In particular the maximum height of  the splash contour is at the intersection of  the sphere and 
the free surface, namely at r / ~  oo for which equation (55) gives 

R 
~ ' (~o, t )=--~  (1 + c o s 0 0 ) [ 1  - 3 ( 1  - c o s 0 o ) ] .  (56) 

The wetting factor, defined in (8) may be found by substituting (56) in (8) and letting ho = 
R (1 + cos 00). Hence we get a rather simple expression: 

3 ho 
C~(Oo)= 3 [1 - ¼(1 + cos0o)]  = $(1 - ~ - ) .  (57) 

Equation (57) shows that at the instant of  impact the wetting factor attains its maximum value 
of  3/2 and decreases monotonically with a further increase in the penetration depth. Schiffman 
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Figure 3. A comparison between analytical solution for the variation of the wetting factor versus the pene- 
tration depth (eq. (53)) with the empirical result of Cooper [4] and the experimental data given in Burt [2]. 

and Spencer's [20] analysis, which is based on Wagner's [28] expanding disk model yields C w = 

3/2 for all penetrations. This theoretical value was obtained by using a well-known expression 
for the free surface disturbance caused by a vertical impact of a disk, 

d t  ( r  2 _ c 2 )~/2 - s in -~  , (58) 

where V is the impact velocity, c is the radius of the disk and r is the radial distance in the plane 
of the disk. 

It should be noted however that actual measurements of splash contours (White [32], Nise- 
wanger [15], Burt [2]) clearly demonstrate that the wetting factor changes considerably with 
the penetration depth as predicted by the theoretical model (57). A comparison between the 
experimental measurements of White [32] with the theoretical model (57) is presented in Fig. 3 
and the agreement is satisfactory. Also given in the same figure is the semi-empirical solution 
due to Cooper [4] which is in fact an improvement of Schiffman and Spencer's [19] expanding 
disk model when higher order terms are taken into account. 

6. The vertical force experienced by the sphere 

To find the vertical hydrodynamic force acting on a sphere penetrating a moving free surface 
we employ Lagrange's equation of motion. Let the instantaneous free surface elevation above 
the mean water level be denoted by ~'(t), and the time derivative ~(t) represents the vertical ve- 
locity of the free surface. The instantaneous elevation of the sphere center above the mean water 
level is denoted by z such that ~ = - U ( t ) ,  where U(t) is the time-dependent vertical velocity of 
the sphere. The total kinetic energy imparted to the fluid by the vertical motion of the sphere 
is (see (38)) 

r = ½pv(00)  X ( 0 o ) ( U -  ~-)2 __ T(Oo)(U- ~)~, (59) 

Journal o f  Engineering Math., Vol. 15 (1981) 221-240 



A sphere penetrating a free surface 235 

and the total vertical hydrodynamical (including buoyancy) force experienced by the sphere is 
therefore 

d 
F = - d t  [T(O°)(U - ()] + pV(Oo)(g + ()  

ar(Oo) 
= - r(Oo)(I)-  () + ~ ( U - ( )  2 +pV(Oo)(g+ ~) (60) 

Thus, the hydrodynamical force acting on a sphere penetrating with constant velocity an other- 
wise calm free surface is 

"F= OT(Oo) Ua +pgV(Oo) (61) 
Oz 

whereas the wave-slam force experienced by a stationary sphere in the presence of a moving 
free surface is given by 

F =  [pV(0o)+ T(0o)] ~ + - -  
a T(O o) : 

az ~ + pgV(Oo) (62) 

which is identical with the expression given by Kaplan and Silbert [9] for the wave slam on a 
cylindrical platform. 

An important parameter in vertical water entry is the so-called slamming coefficient defined by 

2F 2 ~ 2 OT(Oo) 
Cs(O°)- p r r R 2 ~ -  zrR 2 az [X(0°)V(0°)]- zrpR 2 Oz (63) 

The slamming coefficient of a sphere striking a free surface vertically may be then found by 
substituting (36) and (38) into (63), which yields 

t c°sh2 [p(n - 00)] sinh(P0o) 
Cs(Oo) = - 3sin(2 00) fo (4p2 + 1) sinh(2pTr) cosh(P0o) 

sinh [2p(zr - 0o)1 

- t dp 

t sinh [2p(g Oo)]sinh(pOo) + 2sin20o f ?  p(gp 2 + 1) 

(64) 

cosh 2 [p(~r 0o)1 

sinh(2pTr) cosh 2 (/90o) 
cosh [2p(lr - 0o)1 | d + j' p 

The slamming coefficient of a sphere is depicted in Fig. 4 against the dimensionless submergence 
Z o/R. This coefficient rises sharply from zero at first contact to a maximum value of C s ~ 0.96 at 
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Figure 4. Variation of the slamming coefficient of a sphere versus the penetration depth as given by eq. (64). 

z o/R ,~ -0 .8  and then it decreases to a minimum at Z o/R .-, 0.3. Experimental measurements on 
the vertical entry of a sphere, conducted by Nisewanger [15] with a constant entry velocity of 23.5 

fps and reported in Wardlaw et al. [29], show the maximum slamming coefficient as C s ~ 1.0 
in agreement with our theoretical prediction. This maximum value also agrees with impact-resist- 
ance measurements reported by Watanabe [30] for a sphere (28 cm in diameter) falling freely 
upon a water surface. 

The corresponding slamming coefficient of a cylinder striking a free surface is given, in an 
analogous manner to (63), by 

F _ 1 0 1 aT(~o) (65)  
Cs(~°) = p r o  r Oz [X(~0)A(~0)]- pr az 

where ~o is defined in (43) and A(~o) is the immersed area of  the cylinder given by 

A ( : )  = ½ r ~ ( :  - sin :).  (66) 

Substituting Taylor's solution (42) for the added mass of a cylinder, together with (21) and 
(66) into (65), we find 

el x [ 2/1"3 F sin~ 0 2(1--  COS__._.. ~)-~ .1_ ; s i n ~ 0 + c o s ¢ -  I } .  
Cs(~o)=c°sec(2~°)]-3-[(2rr_~0)2 + (2n__~o)3 ._J (67) 

The variation of the cylinder slamming coefficient with the submergence depth as given by eq. 
(67) and depicted in Fig. 5, implies that Cs(O ) = 7r. Hence the impact force of a cylinder striking 
a free surface is of an impulsive nature and rises instantaneously from zero to ~r at the instant of 
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Figure 5. Variation of the slamming coefficient of an infinite cylinder, as given by eq. (67), versus the open- 
ing angle ~o defined in eq. (43). 

contact. It should be noted that initial stage of  impact of  a cylinder differs from that of  a sphere 

where the slamming coefficient is zero at first contact. The fact that the slamming coefficient 
of  a cylinder immediately after contact is indeed of  an impulsive nature and agrees with the 

theoretical limit Cs(0 ) = rr, was verified experimentally by Sarpkaya [17] by using a large U-tube 
tunnel with a free surface oscillating past fixed cylinders 3 to 8 inches in diameter. Apparently 
Watanabe [30, 31] was the first to verify experimentally that for small penetration depths the 

slamming coefficient of  a sphere increases monotonically from zero to some maximum value, 
whereas that o f  a cylinder decreases monotonically from an initial maximum value. 

Appendix A 

A typical normal solution of  the Laplace equation in toroidal coordinates is 

,1/2 . . . . .  / sinh pO [ 
~b(r/, 0) = (cosh I? - cos tl) _r,,pl.cosrl ~) ' [cosh p0J" " (A1) 

Hence, since unity is also harmonic, 

1 = (cosh r / -  cos O) 1A fo 0° C(p)Kp (cosh r/) cosh [p(O - or)] dp (A2) 

where C(p) is an unknown function of  p, and a is an undetermined constant. Equation (A2) is 
valid for any rl and for the particular choice of  r/= 0 it reduces to 

(1 - cos 0) -'/2 = fo"  C(p) cosh [p(O - oO]d p ( a3 )  

since,Kp(1) = 1 (Hobson [8], p. 455). 
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Equation (A3) may be also written as 

( ~ O S  (10)) -1 = ~ "  C(p)cosh [p(O -o~ + 70] dp=v/-2 ~ 
, 1 0  J O  

T. Miloh 

cosh(p0) 
cosh(pTr) dp (A4) 

where the relation between the first and third function in (A4) is given by Gradshteyn and Ryz- 
hik ([7], p. 344). Equation (A4) and analytic continuation yield 

C(p) = X/~ sech (pTr) ; c~ = 1r (AS) 

which when substituted into (A2) renders the desired expression, 

(cosh r / -  cos 0) -½ = V~ f0 ~ sech(prr) cosh [p(O - rr)] Kp(COsh r/)dp. (A6) 

Appendix B 

The governing differential equation for the conal function is 

sinhl rl dr/d sinh r/ ~ + (p2 + ¼ Kp(COsh r/) = 0, (B1) 

from which it follows that 

d o. 
sinh r/ ~ Kp(cosh 7/) = (p2 + ¼) fn Kp(COsh q) sinh q dq. (B2) 

The above relation makes it possible to integrate (23) by parts which results in 

XI(P, 0) -- 2(p 2 + ¼) fo °* (cosh rl - cos 0) -½ Kp(cosh r/) sinh 77 dr/. (B3) 

In deriving (B3) a use has been also made of the fact that Kp(cOs hr/) is bounded for r/--- 0 
and has the following asymptotic expansion for large r/(Robin [16], Vol. 3, p. 153) 

Kp(cosh r/)~(~r-ee2n ) ½  (C°pp------~)X/2cos(pr/+'~)[l +O(e-2r/)] (B4) 

where ~ is some phase angle. 
Next, we refer to a particular form of the Fourier-Mehler integral transformation for conal 

functions (Robin [16], Vol. 3, p. 165) 

= fo ptgh(pTr)Kp(cosh r/)dp fo ~ Kp(COsh r/')f(cosh r/') sinh r/'dr/' (B5) f(cosh r/) 

which yields the following inversion formula for a pair of functions flcosh r/) andg(cosh r/)satis- 
fying the Riemann-Lebesgue lemma 
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f ( c o s h  7?) = f 0  = Kp(cosh  rT)g(p) dp. 

fo g(p )  = p tgh (pTr) g p ( c o s h  r~)f(cosh r/)sinh 77 dr/. 
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(B6) 

(g7 )  

These relations toge ther  with (A5)  yield the desired expression for the  funct ion  X~ def ined 

in (B3) 

X1 (P,  O) = X /~(2 /p ) (p  2 + ¼) cosech(,oTr) cosh[p0r  - 0)],  (B8) 

and,  because o f  (24), 

X2(P, 0) = - x / -2(Z/3)(p  2 + 1/4) cosech (p r  0 sinh [p(rr - 0)]. (B9) 
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